- **1.** Определить порядок дифференциального уравнения $y''' 2(y'')^5 + x^4 \cdot y' x^{11} = 0$.
- **2.** Дифференциальное уравнение в нормальной форме (x+7)y' = y-3 можно преобразовать к следующему уравнению в дифференциальной форме:...
- **3.** Характеристическое уравнение линейного однородного ДУ второго порядка с постоянными коэффициентами y'' 5y' + 6y = 0 имеет вид...
- **4.** Укажите общее решение линейного однородного ДУ второго порядка с постоянными коэффициентами y'' 14y' + 74y = 0, характеристическое уравнение которого имеет два комплексных корня $k_1 = 7 + 5i$ и $k_2 = 7 5i$
- **5**. Частная производная $\frac{\partial z}{\partial x}$ функции $z = 2x^2y + 3xy^3 + 5x^4$ равна...
- **6.** Частная производная $\frac{\partial z}{\partial y}$ функции $z = 2x^2y + 3xy^3 + 5x^4$ равна...
- **7.** В стационарной точке M_0 определитель из вторых частных производных имеет вид $\Delta = \begin{vmatrix} 5 & 1 \\ 3 & 2 \end{vmatrix}$. Тогда в этой точке...
- **8.** Двойной интеграл $\iint_D y dx dy$, где D область, ограниченная снизу графиком функции $y=x^2$, сверху графиком y=3-x, слева прямой x=0, справа прямой x=1, равен...
- **9.** Внутренний интеграл в повторном интеграле $\int_{0}^{1} dx \int_{0}^{x} 2x^{6} dy$ следует заменить выражением...
- **10.** В результате применения формулы Ньютона-Лейбница интеграл $\int_{a}^{b} dx (x^2 y)_{x}^{\sin x}$ преобразуется к виду...

- **11.** Если плотность пластины, занимающей область D, задается формулой $\rho(x,y)=3$, то массу этой пластины можно найти по формуле...
- **12.** Если плотность пластины, занимающей область D, задается формулой $\rho(x,y)=3$, то статический момент этой пластины относительно оси Ox можно найти по формуле...
- **13.** Если плотность пластины, занимающей область D, задается формулой $\rho(x,y)=3$, то статический момент этой пластины относительно оси Oy можно найти по формуле...
- **14.** Криволинейный интеграл $\int_L x dx + 2y dy$, где L дуга параболы $y = 3x^2 + 1$ от точки A(0;1) до точки B(1;4), равен
- 15. Укажите криволинейный интеграл второго рода, не зависящий от пути интегрирования
- **16.** Третий член ряда $\sum_{n=1}^{\infty} \frac{(2n+1)\cdot (n-1)!}{n^2}$ равен...
- 17. Какой из указанных рядов расходится?
- **18.** Сумма числового ряда $\sum_{n=1}^{\infty} \left(\frac{4}{5}\right)^n$ равна...
- **19.** Чтобы исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{7 \cdot 2^n}{n!}$ по признаку Д'Аламбера, требуется вычислить ...
- **20.** Чтобы исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{2+n}{7^n}$ по признаку Д'Аламбера, требуется вычислить ...
- **21.** Чтобы исследовать сходимость ряда $\sum_{n=1}^{\infty} \frac{2^n}{7^n}$ по радикальному признаку Коши, требуется вычислить ...

- **22.** При исследовании на сходимость числовых рядов A) $\sum_{n=1}^{\infty} \frac{2^n}{7^n}$ и B)
- $\sum_{n=1}^{\infty} \frac{5^n}{3^n}$ по радикальному признаку Коши были вычислены значения

$$q_A = \lim_{n \to \infty} \sqrt[n]{\frac{2^n}{7^n}} = \frac{2}{7}$$
 и $q_B = \lim_{n \to \infty} \sqrt[n]{\frac{5^n}{3^n}} = \frac{5}{3}$. Следовательно, ...

- **23.** Радиус сходимости степенного ряда $\sum_{n=1}^{\infty} \frac{n+5}{3^n} x^n$ равен...
- **24.** Ряд Фурье функции f(x) = 3x + 5 на интервале $-\pi < x < \pi$ в точке $x_0 = \pi$ сходится к значению...
- **25.** Вычислить C_8^5 .
- **26.** Вычислить A_5^2 .
- **27.** Вычислить P_5 .
- **28.** В урне 4 зеленых и 3 красных шара. Найти вероятность того, что случайно взятый шар будет красного цвета.
- **29.** Вероятность работы прибора равна 0,65. Найти вероятность того, что этот прибор не будет работать.
- **30.** Известно, что вероятность поступления на сборку детали, произведенной на первом заводе, равна $P(H_1)=0.9$, а произведенной на втором заводе $P(H_2)=0.1$. Вероятность наличия бракованной детали в продукции первого завода составляет $P_{H_1}(A)=0.02$, а в продукции второго завода $P_{H_2}(A)=0.03$. Вероятность поступления бракованной детали на сборку равна

- **31.** Если стрелок попадает в мишень с вероятностью p=0.85, то вероятность того, что в серии из 5 выстрелов он попадет в мишень ровно 2 раза, может быть вычислена по формуле
- **32.** Если в серии из n=1000 испытаний вероятность наступления события A равна p=0,495, то для вычисления вероятности того, что событие A наступит 500 раз, следует воспользоваться...
- **33.** Если в серии из n = 1000 испытаний вероятность наступления события A равна p = 0,495, то для вычисления вероятности того, что событие A наступит от 480 до 515 раз, следует воспользоваться...
- **34.** Если в серии из n=1000 испытаний вероятность наступления события A равна $p=0{,}005$, то для вычисления вероятности того, что событие A наступит 500 раз, следует воспользоваться...
- **35.** Вероятность поражения мишени первым стрелком равна 0,9, а вторым 0,8. Оба стрелка стреляют одновременно. Вероятность поражения мишени хотя бы одним стрелком равна...
- **36.** Найти математическое ожидание дискретной случайной величины X, распределенной по данному закону распределения.

X_i	10	20	30	40
P_i	0,5	0,1	0,3	0,1